Saturday, June 16, 2012

Catching some rays

Friday, June 15, 2012

Drawn together by the force of nature, but pulled apart by the force of man ? it sounds like the setting for a love story, but it is also a basic description of how scientists have begun to make more efficient organic solar cells.

At the atomic level, organic solar cells function like the feuding families in Romeo and Juliet. There's a strong natural attraction between the positive and negative charges that a photon generates after it strikes the cell, but in order to capture the energy, these charges need to be kept separate.

When these charges are still bound together, they are known to scientists as an exciton. "The real question that this work tries to answer is how to design a material that will make splitting the exciton require less energy," said senior chemist Lin Chen of the U.S. Department of Energy's (DOE) Argonne National Laboratory.

Excitons can be thought of as a sort of "quasiparticle," Chen said, because they exhibit certain unique behaviors. When the two charged regions of the exciton ? the electron and a region known as a "hole" ? are close together, they are difficult to pry apart.

When energy is added to the system, however, the charges begin to separate, rendering the electrons and holes completely free and eventually allowing for the possibility of generating current and extracting electricity.

"The closer the hole and the electron regions are inside an exciton, the more likely they are to recombine without generating electricity," Chen said. "But if they are already 'pre-separated,' or polarized, the more likely they are to escape from this potential trap and become effective charge carriers."

In the new experiment, Chen and her colleagues examined how four different molecules in the polymer layer in the middle of a solar cell generated different exciton dynamics. They discovered that more heavily polarized excitons yielded more efficient polymer-based solar cells.

"If the conventional exciton, right after it is generated, contains the hole and electron in almost the same location, these new materials are generating an exciton that is much more polarized at the beginning," Chen said. Currently, the collaborative team is exploring new materials for high-efficiency organic solar cells based on these findings.

Organic solar cells still have a ways to go to get close to the efficiency of their inorganic, silicon-based competitors, but they remain much more attractive from a cost perspective. Further research into the electronic dynamics of organic photovoltaics is essential to improving their efficiency and thus making solar power cost-competitive with conventional energy sources, Chen said.

###

DOE/Argonne National Laboratory: http://www.anl.gov

Thanks to DOE/Argonne National Laboratory for this article.

This press release was posted to serve as a topic for discussion. Please comment below. We try our best to only post press releases that are associated with peer reviewed scientific literature. Critical discussions of the research are appreciated. If you need help finding a link to the original article, please contact us on twitter or via e-mail.

This press release has been viewed 25 time(s).

king arthur there will be blood there will be blood nigel barker 420 secret service fenway park

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.